Bochner-Riesz means of functions in weak-L p

+ infinity, to f(x) in norm and for almost every x in R(N). We also observe that the means of the function absolute value of x-N/p, which belongs to L(p,infinity) (R(N)) but not to the closure of test functions, converge for no x -->
ISSN: 1436-5081
0026-9255
DOI: 10.1007/bf01311209
Přístupová URL adresa: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a55fd8b5f16752fd6ea5fee767e7e77d
https://doi.org/10.1007/bf01311209
Rights: CLOSED
Přírůstkové číslo: edsair.doi.dedup.....a55fd8b5f16752fd6ea5fee767e7e77d
Autor: Leonardo Colzani, Marco Vignati, Giancarlo Travaglini
Přispěvatelé: Colzani, L, Travaglini, G, Vignati, M
Rok vydání: 1993
Předmět:
Zdroj: Monatshefte f�r Mathematik. 115:35-45
ISSN: 1436-5081
0026-9255
DOI: 10.1007/bf01311209
Popis: The Bochner-Riesz means of order delta greater-than-or-equal-to 0 for suitable test functions on R(N) are defined via the Fourier transform by (S(R)(delta)f)(xi) = (1 - \xi\2/R2)+(delta)f(xi). We show that the means of the critical index delta = N/P - N + 1/2, 1 < p < 2N/N + 1, do not map L(p,infinity)(R(N)) into L(p,infinity) (R(N)), but they map radial functions of L(p,infinity) (R(N)) into L(p,infinity) (R(N)). Moreover, if f is radial and in the L(p,infinity) (R(N)) closure of test functions, S(R)(delta)f (x) converges, as R --> + infinity, to f(x) in norm and for almost every x in R(N). We also observe that the means of the function absolute value of x-N/p, which belongs to L(p,infinity) (R(N)) but not to the closure of test functions, converge for no x
Databáze: OpenAIRE