Participation of kinin receptors on memory impairment after chronic infusion of human amyloid-β 1-40 peptide in mice
Autor: | Maria Fernanda Queiroz Prado Bittencourt, Mayra Tolentino Resk Lemos, João Bosco Pesquero, Ariadiny Lima Caetano, Tania Araujo Viel, Karis Ester Dong, Fabio Agostini Amaral, Hudson Sousa Buck |
---|---|
Rok vydání: | 2010 |
Předmět: |
Male
medicine.medical_specialty Receptor Bradykinin B2 Neuropeptide Bradykinin Motor Activity Hippocampal formation Peptide hormone Receptor Bradykinin B1 Mice Cellular and Molecular Neuroscience chemistry.chemical_compound Endocrinology Memory Internal medicine Avoidance Learning medicine Animals Memory impairment Receptor Mice Knockout Neurons Analysis of Variance Memory Disorders Amyloid beta-Peptides Endocrine and Autonomic Systems business.industry Brain General Medicine Kinin medicine.disease MEMÓRIA Peptide Fragments Neurology chemistry Alzheimer's disease business |
Zdroj: | Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual) Universidade de São Paulo (USP) instacron:USP |
ISSN: | 0143-4179 |
DOI: | 10.1016/j.npep.2009.10.006 |
Popis: | Chronic infusion of human amyloid-beta 1-40 (Abeta) in the lateral ventricle (LV) of rats is associated with memory impairment and increase of kinin receptors in cortical and hippocampal areas. Deletion of kinin B1 or B2 receptors abolished memory impairment caused by an acute single injection of Abeta in the LV. As brain tissue and kinin receptors could unlikely react to acute or chronic administration of a similar quantity of Abeta, we evaluated the participation of B1 or B2 receptors in memory impairment after chronic infusion of Abeta. Male C57Bl/6J (wt), knock-out B1 (koB1) or B2 (koB2) mice (12weeks of age) previously trained in a two-way shuttle-box and achieving conditioned avoidance responses (CAR, % of 50 trials) were infused with AB (550pmol, 0.12microL/h, 28days) or vehicle in the LV using a mini-osmotic pump. They were tested before the surgery (T0), 7 and 35days after the infusion started (T7; T35). In T0, no difference was observed between CAR of the control (Cwt=59.7+/-6.7%; CkoB1=46.7+/-4.0%; CkoB2=64.4+/-5.8%) and Abeta (Abetawt=66.0+/-3.0%; AbetakoB1=66.8+/-8.2%; AbetakoB2=58.7+/-5.9%) groups. In T7, AbetakoB2 showed a significant decrease in CAR (41.0+/-8.6%) compared to the control-koB2 (72.8+/-2.2%, P0.05). In T35, a significant decrease (P0.05) was observed in Abetawt (40.7+/-3.3%) and AbetakoB2 (41.2+/-10.7%) but not in the AbetakoB1 (64.0+/-14.0%) compared to their control groups. No changes were observed in the controls at T35. We suggest that in chronic infusion of BA, B1 receptors could play an important role in the neurodegenerative process. Conversely, the premature memory impairment of koB2 suggests that it may be a protective factor. |
Databáze: | OpenAIRE |
Externí odkaz: |
Abstrakt: | Chronic infusion of human amyloid-beta 1-40 (Abeta) in the lateral ventricle (LV) of rats is associated with memory impairment and increase of kinin receptors in cortical and hippocampal areas. Deletion of kinin B1 or B2 receptors abolished memory impairment caused by an acute single injection of Abeta in the LV. As brain tissue and kinin receptors could unlikely react to acute or chronic administration of a similar quantity of Abeta, we evaluated the participation of B1 or B2 receptors in memory impairment after chronic infusion of Abeta. Male C57Bl/6J (wt), knock-out B1 (koB1) or B2 (koB2) mice (12weeks of age) previously trained in a two-way shuttle-box and achieving conditioned avoidance responses (CAR, % of 50 trials) were infused with AB (550pmol, 0.12microL/h, 28days) or vehicle in the LV using a mini-osmotic pump. They were tested before the surgery (T0), 7 and 35days after the infusion started (T7; T35). In T0, no difference was observed between CAR of the control (Cwt=59.7+/-6.7%; CkoB1=46.7+/-4.0%; CkoB2=64.4+/-5.8%) and Abeta (Abetawt=66.0+/-3.0%; AbetakoB1=66.8+/-8.2%; AbetakoB2=58.7+/-5.9%) groups. In T7, AbetakoB2 showed a significant decrease in CAR (41.0+/-8.6%) compared to the control-koB2 (72.8+/-2.2%, P0.05). In T35, a significant decrease (P0.05) was observed in Abetawt (40.7+/-3.3%) and AbetakoB2 (41.2+/-10.7%) but not in the AbetakoB1 (64.0+/-14.0%) compared to their control groups. No changes were observed in the controls at T35. We suggest that in chronic infusion of BA, B1 receptors could play an important role in the neurodegenerative process. Conversely, the premature memory impairment of koB2 suggests that it may be a protective factor. |
---|---|
ISSN: | 01434179 |
DOI: | 10.1016/j.npep.2009.10.006 |