Acoustic Diversity Classification Using Machine Learning Techniques: Towards Automated Marine Big Data Analysis

Autor: François Rioult, Emna Hachicha Belghith, Medjber Bouzidi
Přispěvatelé: Equipe CODAG - Laboratoire GREYC - UMR6072, Groupe de Recherche en Informatique, Image et Instrumentation de Caen (GREYC), Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU), SINAY - Maritime Data Solutions
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: International Journal on Artificial Intelligence Tools
International Journal on Artificial Intelligence Tools, World Scientific Publishing, 2020, 29 (03n04), pp.2060011. ⟨10.1142/S0218213020600118⟩
ISSN: 0218-2130
DOI: 10.1142/S0218213020600118⟩
Popis: During the last years, big data has become the new emerging trend that increasingly attracting the attention of the R&D community in several fields (e.g., image processing, database engineering, data mining, artificial intelligence). Marine data is part of these fields which accommodates this growth, hence the appearance of marine big data paradigm that monitoring advocates the assessment of human impact on marine data. Nonetheless, supporting acoustic sounds classification is missing in such environment, with taking into account the diversity of such data (i.e., sounds of living undersea species, sounds of human activities, and sounds of environmental effects). To overcome this issue, we propose in this paper an approach that efficiently allowing acoustic diversity classification using machine learning techniques. The aim is to reach an automated support of marine big data analysis. We have conducted a set of experiments, using a real marine dataset, in order to validate our approach and show its effectiveness and efficiency. To do so, three machine learning techniques are employed: (i) classic machine learning models (i.e., k-nearest neighbor and support vector machine), (ii) deep learning based on convolutional neural networks, and (iii) transfer learning based on the reuse of pretrained models.
Databáze: OpenAIRE