Nadler and Kannan Type Set Valued Mappings in M-Metric Spaces and an Application
Autor: | Pradip Ramesh Patle, Hassen Aydi, Dhananjay Gopal, Nabil Mlaiki, Deepesh Kumar Patel |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Discrete mathematics
Current (mathematics) lcsh:Mathematics General Mathematics Homotopy multivalued mapping 010102 general mathematics homotopy Fixed-point theorem Fixed point Type (model theory) lcsh:QA1-939 M-metric M-Pompeiu–Hausdorff type metric fixed point 01 natural sciences 010101 applied mathematics Set (abstract data type) Metric space Computer Science (miscellaneous) State of art 0101 mathematics Engineering (miscellaneous) Mathematics |
Zdroj: | Mathematics; Volume 7; Issue 4; Pages: 373 Mathematics, Vol 7, Iss 4, p 373 (2019) |
ISSN: | 2227-7390 |
DOI: | 10.3390/math7040373 |
Popis: | This article intends to initiate the study of Pompeiu–Hausdorff distance induced by an M-metric. The Nadler and Kannan type fixed point theorems for set-valued mappings are also established in the said spaces. Moreover, the discussion is supported with the aid of competent examples and a result on homotopy. This approach improves the current state of art in fixed point theory. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |