Butein induces intrinsic pathway of apoptosis, vimentin proteolysis, and inhibition of cancer stem cell population in a human papillary thyroid cancer cell line

Autor: Savita Kulkarni, Devavrat Tripathi
Rok vydání: 2021
Předmět:
Zdroj: Toxicology in vitro : an international journal published in association with BIBRA. 77
ISSN: 1879-3177
Popis: Epithelial-mesenchymal transition (EMT) and cancer stem cells (CSCs) play an essential role in metastasis of papillary thyroid cancer (PTC). Further mesenchymal marker vimentin is linked with metastasis and cancer stem cell generation. Hence, inhibition of EMT and effective elimination of CSCs offers a novel target for the development of new therapeutic agents. The present study observed that at lower concentration, butein, a major bioactive chalcone, significantly inhibits NPA (papillary thyroid cancer cell line) cell migration and reduces extracellular acidification rate (ECAR) an indicator of enhanced glycolysis, required for cell migration. Additionally, at lower concentrations, butein treatment also suppresses vimentin phosphorylation, an essential step in cell migration, proving its potential against cell migration. Phosphorylation of vimentin is crucial in the protection of vimentin from caspase-mediated proteolysis. Interestingly, butein activates caspase-3 for the apoptosis execution at higher concentration; hence, total levels of vimentin were investigated. Butein induces caspase-3 mediated proteolysis of vimentin. Vimentin and glycolysis are essential for maintaining CSCs; therefore, aldeflour assay and side population assay were performed to investigate the effect of butein on CSCs. Our data suggest butein mediates the reduction in CSCs population. Here we report a novel mechanism of butein mediated inhibition of NPA cells migration by suppressing vimentin phosphorylation and its subsequent proteolysis. Collectively our data suggest the potential of butein as an innovative anticancer therapeutic agent for PTC management.
Databáze: OpenAIRE