Popis: |
The strong magnetic field of functional magnetic resonance imaging (fMRI) and the supine position of participants in fMRI scanners severely limit how participants can interact during fMRI experiments. This paper explores the use of air properties to design interaction-device systems that allow various interaction styles inside a fMRI scanner. Airflow and air pressure are explored to design and develop the interaction system. A series of air-based devices are introduced and discussed to demonstrate the feasibility of an air-based approach. This includes soft tactile and conventional controls (e.g., button, slider, joystick, pedal). To achieve fMRI-compatibility, all parts used inside the scanner are built from non-ferromagnetic, off-the-shelf plastic, and/or 3D printed materials. The fMRI compatibility was evaluated on a 3.0 Tesla fMRI scanner. We conclude with example applications and thoughts on future avenues of research. |