Sorting of Molecular Building Blocks from Solution to Surface
Autor: | Graham de Ruiter, Antonino Gulino, Michal Lahav, Petr Milko, Milko E. van der Boom, Hodaya Keisar, Linda J. W. Shimon, Yael Diskin-Posner, Aldrik H. Velders, Guennadi Evmenenko |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
inorganic chemicals
assembly Silicon chemistry.chemical_element 010402 general chemistry 01 natural sciences Biochemistry Catalysis Metal chemistry.chemical_compound Colloid and Surface Chemistry monolayer Monolayer Life Science Osmium Isostructural Benzene ruthenium BioNanoTechnology VLAG 010405 organic chemistry Chemistry osmium General Chemistry 0104 chemical sciences Ruthenium Crystallography Covalent bond visual_art visual_art.visual_art_medium |
Zdroj: | Journal of the American Chemical Society, 140(26), 8162-8171 Journal of the American Chemical Society 140 (2018) 26 |
ISSN: | 0002-7863 |
Popis: | We demonstrate that molecular gradients on an organic monolayer is formed by preferential binding of ruthenium complexes from solutions also containing equimolar amounts of isostructural osmium complexes. The monolayer consists of a nanometer-thick assembly of 1,3,5-tris(4-pyridylethenyl)benzene (TPEB) covalently attached to a silicon or metal-oxide surface. The molecular gradient of ruthenium and osmium complexes is orthogonal to the surface plane. This gradient propagates throughout the molecular assembly with thicknesses over 30 nm. Using other monolayers consisting of closely related organic molecules or metal complexes results in the formation of molecular assemblies having an homogeneous and equimolar distribution of ruthenium and osmium complexes. Spectroscopic and computational studies revealed that the geometry of the complexes and the electronic properties of their ligands are nearly identical. These subtle differences cause the isostructural osmium and ruthenium complexes to pack differently on modified surfaces as also demonstrated in crystals grown from solution. The different packing behavior, combined with the organic monolayer significantly contributes to the observed differences in chemical composition on the surface. |
Databáze: | OpenAIRE |
Externí odkaz: |