Secondary nanoplastics released from a biodegradable microplastic severely impact freshwater environments

Autor: Miguel Tamayo-Belda, Francisco Leganés, Francisca Fernández-Piñas, Roberto Rosal, Miguel González-Pleiter, Gerardo Pulido-Reyes, Georgiana Amariei
Přispěvatelé: UAM. Departamento de Biología
Rok vydání: 2019
Předmět:
Zdroj: Environmental Science: Nano. 6:1382-1392
ISSN: 2051-8161
2051-8153
DOI: 10.1039/c8en01427b
Popis: This article is part of the themed collection: Environmental Science: Nano Recent HOT Articles https://pubs.rsc.org/en/journals/articlecollectionlanding?sercode=en&themeid=280a8 9ca-3eed-4abe-ae65-c856206f6c3c Article selected by the Editors in Chief of Environmental Science journals: DOI: 10.1039/D0EM90014A (Editorial)
Over the last five decades, plastics production has increased as a consequence of their use in strategic sectors causing damage on aquatic ecosystems. In this context, biodegradable plastics have emerged as an ecological alternative because they are easily degradable in the environment. Despite the recent advances in the field of plastic ecotoxicology, the ecological impact of secondary nanoplastics (nanoplastics resulting from natural degradation of micro and macro plastics) in the environment remains poorly understood. Here, we have investigated the effects of secondary nanoplastics of polyhydroxybutyrate (PHB), a biodegradable plastic, on three representative organisms of aquatic ecosystems. Secondary PHB-nanoplastics were produced from PHB-microplastics by abiotic degradation under environmentally representative conditions. Secondary PHB-nanoplastics induced a significant decrease in cellular growth and altered relevant physiological parameters in all organisms. We investigated whether the observed toxicity was exerted by PHB-nanoplastics themselves or by other abiotic degradation products released from PHB-microplastics. An experiment was run in which PHB-nanoplastics were removed by ultrafiltration; the resulting supernatant was not toxic to the organisms, ruling out the presence of toxic chemicals in the PHB-microplastics. In addition, we have performed a complete physicochemical characterization confirming the presence of secondary PHB-nanoplastics in the 75-200 nm range. All results put together indicated that secondary PHB-nanoplastics released as a consequence of abiotic degradation of PHB-microplastics were harmful for the tested organisms, suggesting that biodegradable plastic does not mean safe for the environment in the case of PHB
Databáze: OpenAIRE