Riverine carbon export in the arid to semiarid Wuding River catchment on the Chinese Loess Plateau

Autor: Suiji Wang, Frankie Hin Ting Cho, N.F. Fang, Lishan Ran, Mingyang Tian, Xiankun Yang, Xixi Lu
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Biogeosciences, Vol 15, Pp 3857-3871 (2018)
ISSN: 1726-4189
1726-4170
Popis: Riverine export of terrestrially derived carbon represents a key component of the global carbon cycle. In this study we quantify the fate of riverine carbon within the Wuding River catchment on the Chinese Loess Plateau. Export of dissolved organic and inorganic carbon (DOC and DIC) exhibited pronounced spatial and temporal variability. While DOC concentration first presented a downward trend along the river course and then increased in the main-stem river, it showed no significant seasonal differences and was not sensitive to flow dynamics. This likely reflects the predominance of groundwater input over the entire year and its highly stable DOC. DIC concentration in the loess subcatchment is significantly higher than that in the sandy subcatchment, due largely to dissolution of carbonates that are abundant in loess. In addition, bulk particulate organic carbon content (POC%) showed strong seasonal variability with low values in the wet season owing to input of deeper soils by gully erosion. The downstream carbon flux was (7.0 ± 1.9) × 1010 g C yr−1 and dominated by DIC and POC. Total CO2 emissions from water surface were (3.7 ± 0.6) × 1010 g C yr−1. Radiocarbon analysis revealed that the degassed CO2 was 810–1890 years old, indicating the release of old carbon previously stored in soil horizons. Riverine carbon export in the Wuding River catchment has been greatly modified by check dams. Our estimate shows that carbon burial through sediment storage was (7.8 ± 4.1) × 1010 g C yr−1, representing 42 % of the total riverine carbon export from terrestrial ecosystems on an annual basis ((18.5 ± 4.5) × 1010 g C yr−1). Moreover, the riverine carbon export accounted for 16 % of the catchment's net ecosystem production (NEP). It appears that a significant fraction of terrestrial NEP in this arid to semiarid catchment is laterally transported from the terrestrial biosphere to the drainage network.
Databáze: OpenAIRE