β-NMF AND SPARSITY PROMOTING REGULARIZATIONS FOR COMPLEX MIXTURE UNMIXING. APPLICATION TO 2D HSQC NMR

Autor: Afef Cherni, Sandrine Anthoine, Caroline Chaux
Přispěvatelé: Institut de Mathématiques de Marseille (I2M), Centre National de la Recherche Scientifique (CNRS)-École Centrale de Marseille (ECM)-Aix Marseille Université (AMU), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Cherni, Afef
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: 45th International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2020)
45th International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2020), May 2020, Barcelone, Spain
ICASSP
Popis: International audience; In Nuclear Magnetic Resonance (NMR) spectroscopy, an efficient analysis and a relevant extraction of different molecule properties from a given chemical mixture are important tasks, especially when processing bidimensional NMR data. To that end, using a blind source separation approach based on a variational formulation seems to be a good strategy. However, the poor resolution of NMR spectra and their large dimension require a new and modern blind source separation method. In this work, we propose a new variational formulation for blind source separation (BSS) based on a β-divergence data fidelity term combined with sparsity promoting regularization functions. An application to 2D HSQC NMR experiments illustrates the interest and the effectiveness of the proposed method whether in simulated or real cases.
Databáze: OpenAIRE