Numerical model of optical coherence tomographic vibrography imaging to estimate corneal biomechanical properties
Autor: | Seok Hyun Yun, Sabine Kling, Susana Marcos, Imran B. Akca, Nandor Bekesi, Giuliano Scarcelli, Ernest W. Chang |
---|---|
Rok vydání: | 2014 |
Předmět: |
Frequency response
Intraocular pressure genetic structures Vibrography Swine 01 natural sciences Biochemistry vibrography Cornea Elasticity Imaging Techniques 0302 clinical medicine Research Articles Corneal biomechanical properties corneal natural frequencies Biomechanics 3. Good health non-contact medicine.anatomical_structure corneal biomechanical properties Tomography Optical Coherence Biotechnology Materials science Biomedical Engineering Biophysics Bioengineering Models Biological 010309 optics Biomaterials 03 medical and health sciences Optics 0103 physical sciences medicine Coherence (signal processing) Animals Elasticity (economics) Corneal natural frequencies business.industry Non-contact Natural frequency Elasticity eye diseases 030221 ophthalmology & optometry Cattle sense organs business Biomedical engineering |
Zdroj: | Digital.CSIC. Repositorio Institucional del CSIC instname Journal of the Royal Society Interface Journal of The Royal Society Interface |
Popis: | Most techniques measuring corneal biomechanics in vivo are biased by side factors. We demonstrate the ability of optical coherence tomographic (OCT) vibrography to determine corneal material parameters, while reducing current prevalent restrictions of other techniques (such as intraocular pressure (IOP) and thickness dependency). Modal analysis was performed in a finite-element (FE) model to study the oscillation response in isolated thin corneal flaps/eye globes and to analyse the dependency of the frequency response function on: corneal elasticity, viscoelasticity, geometry (thickness and curvature), IOP and density. The model was verified experimentally in flaps from three bovine corneas and in two enucleated porcine eyes using sound excitation (100¿110 dB) together with a phase-sensitive OCT to measure the frequency response function (range 50¿510 Hz). Simulations showed that corneal vibration in flaps is sensitive to both, geometrical and biomechanical parameters, whereas in whole globes it is primarily sensitive to corneal biomechanical parameters only. Calculations based on the natural frequency shift revealed that flaps of the posterior cornea were 0.8 times less stiff than flaps from the anterior cornea and cross-linked corneas were 1.6 times stiffer than virgin corneas. Sensitivity analysis showed that natural vibration frequencies of whole globes were nearly independent from corneal thickness and IOP within the physiological range. OCT vibrography is a promising non-invasive technique to measure corneal elasticity without biases from corneal thickness and IOP The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007– 2013)/ERC grant agreement no. 294099 and furthermore from the Spanish Government, MINECO, FIS2011-25637, FPI-BES-2009-024560, Harvard Clinical and Translational Science Center (NIH UL1-RR025758), NIH grant no. P41-EB015903, NSF grant no. CBET-1264356; Comunidad de Madrid and EU (FP7/2007-2013/REA 291820). |
Databáze: | OpenAIRE |
Externí odkaz: |