Stochastic ordering of Pólya random variables and monotonicity of the Bernstein–Stancu operator for a negative parameter
Autor: | Florenţa Tripşa, Nicolae R. Pascu |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Discrete mathematics
Distribution (number theory) Applied Mathematics lcsh:Mathematics 010102 general mathematics Probabilistic logic Stochastic order Monotonic function lcsh:QA1-939 01 natural sciences Stochastic ordering Bernstein–Stancu operator 010101 applied mathematics Binomial distribution Operator (computer programming) Monotone operator Discrete Mathematics and Combinatorics 0101 mathematics Trapezoidal rule Pólya urn distribution Random variable Analysis Mathematics |
Zdroj: | Journal of Inequalities and Applications, Vol 2019, Iss 1, Pp 1-10 (2019) |
Popis: | In the present paper, we prove that the probabilities of the Pólya urn distribution (with negative replacement) satisfy a monotonicity property similar to that of the binomial distribution. As a consequence, we show that the corresponding random variables are stochastically ordered with respect to the parameter giving the initial distribution of the urn. An equivalent formulation of this result shows that the new Bernstein–Stancu-type operator introduced in (Pascu et al. in Proc. Rom. Acad., Ser. A: Math. Phys. Tech. Sci. Inf. Sci. 2019, in press) is a monotone operator. The proofs are probabilistic in spirit and rely on various inequalities, some of which are of independent interest (e.g., a refined version of the reversed Cauchy–Bunyakovsky–Schwarz inequality or estimates of the error of approximating an integral by the trapezoidal rule). |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |