Joint Extreme values of $L$-functions
Autor: | Kamalakshya Mahatab, Łukasz Pańkowski, Akshaa Vatwani |
---|---|
Rok vydání: | 2020 |
Předmět: | |
DOI: | 10.48550/arxiv.2001.09274 |
Popis: | We consider $L$-functions $L_1,\ldots,L_k$ from the Selberg class which have polynomial Euler product and satisfy Selberg's orthonormality condition. We show that on every vertical line $s=\sigma+it$ with $\sigma\in(1/2,1)$, these $L$-functions simultaneously take large values of size $\exp\left(c\frac{(\log t)^{1-\sigma}}{\log\log t}\right)$ inside a small neighborhood. |
Databáze: | OpenAIRE |
Externí odkaz: |