Empirical tail copulas for functional data
Autor: | John H. J. Einmahl, Johan Segers |
---|---|
Přispěvatelé: | UCL - SSH/LIDAM/ISBA - Institut de Statistique, Biostatistique et Sciences Actuarielles, Econometrics and Operations Research, Research Group: Econometrics |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Statistics and Probability
tail dependence uniform asymptotic normality Copula (linguistics) Tail dependence Estimator Asymptotic distribution Mathematics - Statistics Theory Function (mathematics) Statistics Theory (math.ST) tail copula estimation extreme value statistics 60G30 60G32 (Primary) 62H20 (Secondary) symbols.namesake Distribution (mathematics) symbols FOS: Mathematics Applied mathematics Limit (mathematics) tail empirical process Statistics Probability and Uncertainty Extreme value theory Gaussian process functional data Mathematics |
Zdroj: | Annals of Statistics, Vol. 49, no. 5, p. 2672-2696 (2021) The Annals of Statistics, 49(5), 2672-2696. Institute of Mathematical Statistics |
ISSN: | 0090-5364 |
DOI: | 10.1214/21-aos2050 |
Popis: | For multivariate distributions in the domain of attraction of a max-stable distribution, the tail copula and the stable tail dependence function are equivalent ways to capture the dependence in the upper tail. The empirical versions of these functions are rank-based estimators whose inflated estimation errors are known to converge weakly to a Gaussian process that is similar in structure to the weak limit of the empirical copula process. We extend this multivariate result to continuous functional data by establishing the asymptotic normality of the estimators of the tail copula, uniformly over all finite subsets of at most $D$ points ($D$ fixed). An application for testing tail copula stationarity is presented. The main tool for deriving the result is the uniform asymptotic normality of all the $D$-variate tail empirical processes. The proof of the main result is non-standard. Comment: 33 pages, 1 figure |
Databáze: | OpenAIRE |
Externí odkaz: |