Metalloprotein entatic control of ligand-metal bonds quantified by ultrafast x-ray spectroscopy
Autor: | Dimosthenis Sokaras, Edward I. Solomon, Hyeongtaek Lim, Robert W. Hartsock, Britt Hedman, Uwe Bergmann, Keith O. Hodgson, Kelly J. Gaffney, Michael W. Mara, Silke Nelson, James M. Glownia, Kristjan Kunnus, Marco Reinhard, Ryan G. Hadt, Roberto Alonso-Mori, Matthieu Chollet, Thomas Kroll |
---|---|
Rok vydání: | 2017 |
Předmět: |
Stereochemistry
Enthalpy Entatic state 02 engineering and technology Ligands 010402 general chemistry 01 natural sciences Ferrous Residue (chemistry) Metalloproteins Metalloprotein Animals Horses chemistry.chemical_classification Multidisciplinary biology Protein Stability Cytochrome c Cytochromes c Spectrometry X-Ray Emission Active site 021001 nanoscience & nanotechnology Electron transport chain 0104 chemical sciences Crystallography chemistry Metals biology.protein 0210 nano-technology |
Zdroj: | Science. 356:1276-1280 |
ISSN: | 1095-9203 0036-8075 |
DOI: | 10.1126/science.aam6203 |
Popis: | Sulfur's balancing act in cytochrome c Cytochrome c enzymes have two distinct functions that depend on the position of a methionine residue. When the sulfur in the methionine side chain coordinates with iron in the enzyme's active site, the protein is optimized for electron transfer; otherwise, it is poised for peroxidase activity. Mara et al. used ultrafast x-ray absorption and emission spectroscopy to probe the energetics of this Fe-S bond (see the Perspective by Bren and Raven). By breaking the bond transiently with light and then timing its reformation, they determined that the surrounding protein environment boosts the bond strength by 4 kilocalories per mole—just enough to toggle between each functional state at a practical rate. Science , this issue p. 1276 ; see also p. 1236 |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |
načítá se...