Covariance features for trajectory analysis

Autor: Talha Karadeniz, Hadi Hakan Maras
Rok vydání: 2016
Předmět:
Zdroj: SIU
Elektronika ir Elektrotechnika, Vol 24, Iss 3, Pp 78-81 (2018)
DOI: 10.1109/siu.2016.7496081
Popis: In this work, it is demonstrated that covariance estimator methods can be used for trajectory classification. It is shown that, features obtained via shrunk covariance estimation are suitable for describing trajectories. Compared to Dynamic Time Warping, application of explained technique is faster and yields more accurate results. An improvement of Dynamic Time Warping based on counting statistical comparison of base distance measures is also achieved. Results on Australian Sign Language and Character Trajectories datasets are reported. Experiment realizations imply feasibility through covariance attributes on time series. DOI: http://dx.doi.org/10.5755/j01.eie.24.3.15290
Databáze: OpenAIRE