SIMULATING VARIOUS TERRESTRIAL AND UAV LIDAR SCANNING CONFIGURATIONS FOR UNDERSTORY FOREST STRUCTURE MODELLING
Autor: | M. Hämmerle, N. Lukač, K.-C. Chen, Zs. Koma, C.-K. Wang, K. Anders, B. Höfle |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
lcsh:Applied optics. Photonics
010504 meteorology & atmospheric sciences Laser scanning 0211 other engineering and technologies Point cloud polna valovna oblika 02 engineering and technology lcsh:Technology 01 natural sciences 3D točke struktura gozda Triangle mesh načrtovanje kampanje na terenu 021101 geological & geomatics engineering 0105 earth and related environmental sciences Remote sensing laser scanning simulation lcsh:T 3D point cloud analysis lcsh:TA1501-1820 full waveform simulacija laserskega skeniranja Understory Vegetation computer.file_format udc:528:004.9 Tree (data structure) Lidar lcsh:TA1-2040 understory Environmental science field campaign planning podrejenost Raster graphics lcsh:Engineering (General). Civil engineering (General) computer forest structure |
Zdroj: | ISPRS Geospatial Week 2017, 18-22 September, Wuhan, China, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. i-2/w4, pp. 59-65, 2017. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol IV-2-W4, Pp 59-65 (2017) |
ISSN: | 2194-9050 2194-9034 |
Popis: | Information about the 3D structure of understory vegetation is of high relevance in forestry research and management (e.g., for complete biomass estimations). However, it has been hardly investigated systematically with state-of-the-art methods such as static terrestrial laser scanning (TLS) or laser scanning from unmanned aerial vehicle platforms (ULS). A prominent challenge for scanning forests is posed by occlusion, calling for proper TLS scan position or ULS flight line configurations in order to achieve an accurate representation of understory vegetation. The aim of our study is to examine the effect of TLS or ULS scanning strategies on (1) the height of individual understory trees and (2) understory canopy height raster models. We simulate full-waveform TLS and ULS point clouds of a virtual forest plot captured from various combinations of max. 12 TLS scan positions or 3 ULS flight lines. The accuracy of the respective datasets is evaluated with reference values given by the virtually scanned 3D triangle mesh tree models. TLS tree height underestimations range up to 1.84 m (15.30 % of tree height) for single TLS scan positions, but combining three scan positions reduces the underestimation to maximum 0.31 m (2.41 %). Combining ULS flight lines also results in improved tree height representation, with a maximum underestimation of 0.24 m (2.15 %). The presented simulation approach offers a complementary source of information for efficient planning of field campaigns aiming at understory vegetation modelling. |
Databáze: | OpenAIRE |
Externí odkaz: |