A partial order structure on interval orders
Autor: | Disanto, F., Luca FERRARI, Rinaldi, S. |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Statistics and Probability
FOS: Computer and information sciences Mathematics::Combinatorics Discrete Mathematics (cs.DM) Applied Mathematics Statistics FOS: Mathematics Mathematics - Combinatorics Probability and Uncertainty Combinatorics (math.CO) Statistics Probability and Uncertainty Computer Science - Discrete Mathematics |
Zdroj: | Scopus-Elsevier |
Popis: | We introduce a partial order structure on the set of interval orders of a given size, and prove that such a structure is in fact a lattice. We also provide a way to compute meet and join inside this lattice. Finally, we show that, if we restrict to series parallel interval order, what we obtain is the classical Tamari poset. 12 pages |
Databáze: | OpenAIRE |
Externí odkaz: |