On sequences not enjoying Schur’s property

Autor: Pablo Jiménez-Rodríguez
Rok vydání: 2017
Předmět:
Zdroj: Open Mathematics, Vol 15, Iss 1, Pp 233-237 (2017)
ISSN: 2391-5455
DOI: 10.1515/math-2017-0024
Popis: Here we proved the existence of a closed vector space of sequences - any nonzero element of which does not comply with Schur’s property, that is, it is weakly convergent but not norm convergent. This allows us to find similar algebraic structures in some subsets of functions.
Databáze: OpenAIRE