Mapping the self-generated magnetic fields due to thermal Weibel instability

Autor: Chaojie Zhang, Yipeng Wu, Mitchell Sinclair, Audrey Farrell, Kenneth A. Marsh, Irina Petrushina, Navid Vafaei-Najafabadi, Apurva Gaikwad, Rotem Kupfer, Karl Kusche, Mikhail Fedurin, Igor Pogorelsky, Mikhail Polyanskiy, Chen-Kang Huang, Jianfei Hua, Wei Lu, Warren B. Mori, Chan Joshi
Rok vydání: 2022
Předmět:
Zdroj: Proceedings of the National Academy of Sciences of the United States of America, vol 119, iss 50
ISSN: 1091-6490
Popis: Weibel-type instability can self-generate and amplify magnetic fields in both space and laboratory plasmas with temperature anisotropy. The electron Weibel instability has generally proven more challenging to measure than its ion counterpart owing to the much smaller inertia of electrons, resulting in a faster growth rate and smaller characteristic wavelength. Here, we have probed the evolution of the two-dimensional distribution of the magnetic field components and the current density due to electron Weibel instability, in $\rm CO_2$-ionized hydrogen gas (plasma) with picosecond resolution using a relativistic electron beam. We find that the wavenumber spectra of the magnetic fields are initially broad but eventually shrink to a narrow spectrum representing the dominant quasi-single mode. The measured $k$-resolved growth rates of the instability validate kinetic theory. Concurrently, self-organization of microscopic plasma currents is observed to amplify the current modulation magnitude that converts up to $\sim 1\%$ of the plasma thermal energy into magnetic energy.
24 pages, 4 figures
Databáze: OpenAIRE