Skein theory and topological quantum registers: Braiding matrices and topological entanglement entropy of non-Abelian quantum Hall states
Autor: | Kazuhiro Hikami |
---|---|
Rok vydání: | 2008 |
Předmět: | |
Zdroj: | Annals of Physics. 323:1729-1769 |
ISSN: | 0003-4916 |
Popis: | We study topological properties of quasi-particle states in the non-Abelian quantum Hall states. We apply a skein-theoretic method to the Read--Rezayi state whose effective theory is the SU(2)_K Chern--Simons theory. As a generalization of the Pfaffian (K=2) and the Fibonacci (K=3) anyon states, we compute the braiding matrices of quasi-particle states with arbitrary spins. Furthermore we propose a method to compute the entanglement entropy skein-theoretically. We find that the entanglement entropy has a nontrivial contribution called the topological entanglement entropy which depends on the quantum dimension of non-Abelian quasi-particle intertwining two subsystems. Comment: 42 pages, many eps files |
Databáze: | OpenAIRE |
Externí odkaz: |