Chaos: The speed limiting phenomenon in dynamic atomic force microscopy
Autor: | Farbod Alijani, A. Keyvani Janbahan, H. Sadeghian Marnani, F. van Keulen, K. Maturova, Hans Goosen |
---|---|
Přispěvatelé: | Dynamics and Control |
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Tapping-mode atomic force microscopy
Chaotic Closed-loop systems General Physics and Astronomy Bifurcation diagram High Tech Systems & Materials 02 engineering and technology Lyapunov exponent Closed-loop bandwidth 01 natural sciences NOMI Nano Opto-Mechatronics Instruments Group law.invention Cartesian coordinate symbols.namesake Atomic force microscopy law Control theory 0103 physical sciences Cartesian coordinate system Attractors 010306 general physics Bifurcation Lyapunov methods Physics Industrial Innovation Bandwidth (signal processing) Phase space methods New mathematical model Chaotic systems Limiting Operation parameters 021001 nanoscience & nanotechnology Nonlinear Sciences::Chaotic Dynamics Dynamic atomic force microscopy Classical mechanics symbols 0210 nano-technology |
Zdroj: | Journal of Applied Physics, 122(22) Journal of Applied Physics, 22, 122 Journal of Applied Physics, 122(22):224306. American Institute of Physics |
ISSN: | 0021-8979 |
Popis: | This paper investigates the closed-loop dynamics of the Tapping Mode Atomic Force Microscopy using a new mathematical model based on the averaging method in Cartesian coordinates. Experimental and numerical observations show that the emergence of chaos in conventional tapping mode AFM strictly limits the imaging speed. We show that, if the controller of AFM is tuned to be faster than a certain threshold, the closed-loop system exhibits a chaotic behavior. The presence of chaos in the closed-loop dynamics is confirmed via bifurcation diagrams, Poincaré sections, and Lyapunov exponents. Unlike the previously detected chaos due to attractive forces in the AFM, which can be circumvented via simple changes in operation parameters, this newly identified chaos is seemingly inevitable and imposes an upper limit for the closed-loop bandwidth of the AFM. |
Databáze: | OpenAIRE |
Externí odkaz: |