Regulation of Exocytosis by Cyclin-dependent Kinase 5 via Phosphorylation of Munc18

Autor: Lin Zhang, Angus Fletcher, David R. Giovannucci, Rongqing Shuang, Edward L. Stuenkel, Mary A. Bittner
Rok vydání: 1999
Předmět:
Zdroj: Journal of Biological Chemistry. 274:4027-4035
ISSN: 0021-9258
DOI: 10.1074/jbc.274.7.4027
Popis: Munc18a, a mammalian neuronal homologue of Saccharomyces cerevisiae Sec1p protein, is essential for secretion, likely as a result of its high affinity interaction with the target SNARE protein syntaxin 1a (where SNARE is derived from SNAP receptor (the soluble N-ethylmaleimide-sensitive fusion protein)). However, this interaction inhibits vesicle SNARE interactions with syntaxin that are required for secretory vesicles to achieve competency for membrane fusion. As such, regulation of the interaction between Munc18a and syntaxin 1a may provide an important mechanism controlling secretory responsiveness. Cyclin-dependent kinase 5 (Cdk5), a member of the Cdc2 family of cell division kinases, co-purifies with Munc18a from rat brain, interacts directly with Munc18a in vitro, and utilizes Munc18a as a substrate for phosphorylation. We have now demonstrated that Cdk5 is capable of phosphorylating Munc18a in vitro within a preformed Munc18a.syntaxin 1a heterodimer complex and that this results in the disassembly of the complex. Using site-directed mutagenesis, the Cdk5 phosphorylation site on Munc18a was identified as Thr574. Stimulation of secretion from neuroendocrine cells produced a corresponding rapid translocation of cytosolic Cdk5 to a particulate fraction and an increase of Cdk5 kinase activity. Inhibition of Cdk5 with olomoucine decreased evoked norepinephrine secretion from chromaffin cells, an effect not observed with the inactive analogue iso-olomoucine. The effects of olomoucine were independent of calcium influx as evidenced by secretory inhibition in permeabilized chromaffin cells and in cells under whole-cell voltage clamp. Furthermore, transfection and expression in chromaffin cells of a neural specific Cdk5 activator, p25, led to a strong increase in nicotinic agonist-induced secretory responses. Our data suggest a model whereby Cdk5 acts to regulate Munc18a interaction with syntaxin 1a and thereby modulates the level of vesicle SNARE interaction with syntaxin 1a and secretory responsiveness.
Databáze: OpenAIRE