Basket Option Pricing Under Jump Diffusion Models

Autor: Ali Safdari-Vaighani
Jazyk: angličtina
Rok vydání: 2017
Předmět:
DOI: 10.5281/zenodo.1131168
Popis: Pricing financial contracts on several underlying assets received more and more interest as a demand for complex derivatives. The option pricing under asset price involving jump diffusion processes leads to the partial integral differential equation (PIDEs), which is an extension of the Black-Scholes PDE with a new integral term. The aim of this paper is to show how basket option prices in the jump diffusion models, mainly on the Merton model, can be computed using RBF based approximation methods. For a test problem, the RBF-PU method is applied for numerical solution of partial integral differential equation arising from the two-asset European vanilla put options. The numerical result shows the accuracy and efficiency of the presented method.
{"references":["F. Black, M. Scholes, The pricing of options and corporate liabilities, J.\nPolit. Econ. 81 (3) (1973) 637-654.","R. C. Merton, Option pricing when underlying stock returns are\ndiscontinuous, Journal of financial economics 3 (1-2) (1976) 125-144.","U. Pettersson, E. Larsson, G. Marcusson, J. Persson, Improved radial\nbasis function methods for multi-dimensional option pricing, J. Comput.\nAppl. Math. 222 (1) (2008) 82-93.","G. Fasshauer, A. Q. M. Khaliq, D. A. Voss, Using mesh free\napproximation for multi asset american options, in: C.S. Chen (Ed.),\nMesh free methods, Journal of Chinese Institute of Engineers 27 (2004)\n563-571, special issue.","A. Safdari-Vaighani, A. Heryudono, E. Larsson, A radial basis function\npartition of unity collocation method for convection-diffusion equations\narising in financial applications, J. Sci. Comput. 64 (2) (2015) 341-367.","X. L. Zhang, Numerical analysis of American option pricing in a\njump-diffusion model, Math. Oper. Res. 22 (3) (1997) 668-690.","M. Briani, R. Natalini, G. Russo, Implicit-explicit numerical schemes for\njump diffusion processes, Calcolo 44 (1) (2007) 33-57.","R. Cont, E. Voltchkova, A finite difference scheme for option pricing in\njump diffusion and exponential Levy models, SIAM J. Numer. Anal. 43\n(4) (2005) 1596-1626 (electronic).","Y. dHalluin, P. A. Forsyth, K. R. Vetzal, Robust numerical methods for\ncontingent claims under jump diffusion processes, IMA J. Numer. Anal.\n25 (1) (2005) 87-112.\n[10] Y. dHalluin, P. A. Forsyth, G. Labahn, A penalty method for American\noptions with jump diffusion processes, Numer. Math. 97 (2) (2004)\n321-352.\n[11] R. Brummelhuis, R. T. L. Chan, A radial basis function scheme for\noption pricing in exponential Levy models, Appl. Math. Finance 21 (3)\n(2014) 238-269.\n[12] S. H. Martzoukos, Contingent claims on foreign assets following\njump-diffusion processes, Review of Derivatives Research 6 (1) (2003)\n27-45.\n[13] S. S. Clift, P. A. Forsyth, Numerical solution of two asset jump diffusion\nmodels for option valuation, Appl. Numer. Math. 58 (6) (2008) 743-782.\n[14] C. La Chioma, Integro-differential problems arising in pricing derivatives\nin jump-diffusion markets, Ph.D. thesis, PhD thesis, Rome University\n(2003).\n[15] H. Windcliff, P. A. Forsyth, and K. R. Vetzal, Analysis of the stability\nof the linear boundary condition for the Black-Scholes equation, Journal\nof Computational Finance, 8 (2004) 65-92.\n[16] E. Larsson, A. Heryudono, A partition of unity radial basis function\ncollocation method for partial differential equations, manuscript in\npreparation (2016)."]}
Databáze: OpenAIRE