An unbounded family of log Calabi–Yau pairs
Autor: | Filippo F. Favale, Gilberto Bini |
---|---|
Přispěvatelé: | Bini, G, Favale, F, G. Bini, F.F. Favale |
Rok vydání: | 2017 |
Předmět: |
geography of threefold
Sequence Degree (graph theory) Projective bundle General Mathematics 14J30 14J32 14J60 Combinatorics Mathematics - Algebraic Geometry symbols.namesake Mathematics::Algebraic Geometry projective bundles Integer Euler characteristic Log Calabi-Yau pair FOS: Mathematics symbols Calabi–Yau manifold Settore MAT/03 - Geometria Algebraic Geometry (math.AG) Mathematics::Symplectic Geometry MAT/03 - GEOMETRIA Mathematics |
Zdroj: | Rendiconti Lincei - Matematica e Applicazioni. 28:619-633 |
ISSN: | 1120-6330 |
DOI: | 10.4171/rlm/779 |
Popis: | We give an explicit example of log Calabi-Yau pairs that are log canonical and have a linearly decreasing Euler characteristic. This is constructed in terms of a degree two covering of a sequence of blow ups of three dimensional projective bundles over the Segre-Hirzebruch surfaces ${\mathbb F}_n$ for every positive integer $n$ big enough. Comment: 16 pages |
Databáze: | OpenAIRE |
Externí odkaz: |