An unbounded family of log Calabi–Yau pairs

Autor: Filippo F. Favale, Gilberto Bini
Přispěvatelé: Bini, G, Favale, F, G. Bini, F.F. Favale
Rok vydání: 2017
Předmět:
Zdroj: Rendiconti Lincei - Matematica e Applicazioni. 28:619-633
ISSN: 1120-6330
DOI: 10.4171/rlm/779
Popis: We give an explicit example of log Calabi-Yau pairs that are log canonical and have a linearly decreasing Euler characteristic. This is constructed in terms of a degree two covering of a sequence of blow ups of three dimensional projective bundles over the Segre-Hirzebruch surfaces ${\mathbb F}_n$ for every positive integer $n$ big enough.
Comment: 16 pages
Databáze: OpenAIRE