Na/K-ATPase signaling regulates collagen synthesis through microRNA-29b-3p in cardiac fibroblasts
Autor: | Steven T. Haller, Jeffrey X. Xie, Michael C. Hill, Christopher J. Cooper, Jiang Liu, Joseph I. Shapiro, Jiang Tian, Huilin Shi, Zijian Xie, David J. Kennedy, Christopher A. Drummond, Xiaoming Fan, Michael R. Garrett |
---|---|
Rok vydání: | 2016 |
Předmět: |
Male
0301 basic medicine medicine.medical_specialty Cardiotonic Agents Regulation of Gene Expression Physiology Cardiac fibrosis Heart Ventricles Down-Regulation Biology Transfection Nephrectomy MicroRNA 29b Rats Sprague-Dawley 03 medical and health sciences chemistry.chemical_compound In vivo Fibrosis Internal medicine microRNA Genetics medicine Animals Na+/K+-ATPase Ouabain Cells Cultured Marinobufagenin Gene Expression Profiling Myocardium Fibroblasts medicine.disease Bufanolides MicroRNAs 030104 developmental biology Endocrinology chemistry Steroids Collagen Sodium-Potassium-Exchanging ATPase Signal Transduction |
Zdroj: | Physiological Genomics. 48:220-229 |
ISSN: | 1531-2267 1094-8341 |
DOI: | 10.1152/physiolgenomics.00116.2015 |
Popis: | Chronic kidney disease (CKD) is accompanied by cardiac fibrosis, hypertrophy, and dysfunction, which are commonly referred to as uremic cardiomyopathy. Our previous studies found that Na/K-ATPase ligands or 5/6th partial nephrectomy (PNx) induces cardiac fibrosis in rats and mice. The current study used in vitro and in vivo models to explore novel roles for microRNA in this mechanism of cardiac fibrosis formation. To accomplish this, we performed microRNA profiling with RT-qPCR based arrays on cardiac tissue from rats subjected to marinobufagenin (MBG) infusion or PNx. The analysis showed that a series of fibrosis-related microRNAs were dysregulated. Among the dysregulated microRNAs, microRNA (miR)-29b-3p, which directly targets mRNA of collagen, was consistently reduced in both PNx and MBG-infused animals. In vitro experiments demonstrated that treatment of primary cultures of adult rat cardiac fibroblasts with Na/K-ATPase ligands induced significant increases in the fibrosis marker, collagen protein, and mRNA expression compared with controls, whereas miR-29b-3p expression decreased >50%. Transfection of miR-29b-3p mimics into cardiac fibroblasts inhibited cardiotonic steroids-induced collagen synthesis. Moreover, a specific Na/K-ATPase signaling antagonist, pNaKtide, prevented ouabain-induced increases in collagen synthesis and decreases in miR-29b-3p expression in these cells. In conclusion, these data are the first to indicate that signaling through Na/K-ATPase regulates miRNAs and specifically, miR-29b-3p expression both in vivo and in vitro. Additionally, these data indicate that miR-29b-3p expression plays an important role in the formation of cardiac fibrosis in CKD. |
Databáze: | OpenAIRE |
Externí odkaz: |