From Newton's second law to Euler's equations of perfect fluids

Autor: Mikaela Iacobelli, Daniel Han-Kwan
Přispěvatelé: Centre de Mathématiques Laurent Schwartz (CMLS), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), ANR-19-CE40-0004,SALVE,Singularités dans des limites asymptotiques d'équations de Vlasov(2019)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society, American Mathematical Society, 2021, ⟨10.1090/proc/15349⟩
ISSN: 0002-9939
1088-6826
DOI: 10.1090/proc/15349⟩
Popis: Vlasov equations can be formally derived from N-body dynamics in the mean-field limit. In some suitable singular limits, they may themselves converge to fluid dynamics equations. Motivated by this heuristic, we introduce natural scalings under which the incompressible Euler equations can be rigorously derived from N-body dynamics with repulsive Coulomb interaction. Our analysis is based on the modulated energy methods of Brenier and Serfaty.
Minor typos corrected
Databáze: OpenAIRE