From Newton's second law to Euler's equations of perfect fluids
Autor: | Mikaela Iacobelli, Daniel Han-Kwan |
---|---|
Přispěvatelé: | Centre de Mathématiques Laurent Schwartz (CMLS), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), ANR-19-CE40-0004,SALVE,Singularités dans des limites asymptotiques d'équations de Vlasov(2019) |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
General Mathematics
FOS: Physical sciences 01 natural sciences symbols.namesake Mathematics - Analysis of PDEs [MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] FOS: Mathematics Fluid dynamics Coulomb [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] Incompressible euler equations Limit (mathematics) 0101 mathematics Mathematical Physics Physics Heuristic Applied Mathematics 010102 general mathematics Dynamics (mechanics) Mathematical Physics (math-ph) 010101 applied mathematics Classical mechanics Energy method Euler's formula symbols Analysis of PDEs (math.AP) |
Zdroj: | Proceedings of the American Mathematical Society Proceedings of the American Mathematical Society, American Mathematical Society, 2021, ⟨10.1090/proc/15349⟩ |
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/15349⟩ |
Popis: | Vlasov equations can be formally derived from N-body dynamics in the mean-field limit. In some suitable singular limits, they may themselves converge to fluid dynamics equations. Motivated by this heuristic, we introduce natural scalings under which the incompressible Euler equations can be rigorously derived from N-body dynamics with repulsive Coulomb interaction. Our analysis is based on the modulated energy methods of Brenier and Serfaty. Minor typos corrected |
Databáze: | OpenAIRE |
Externí odkaz: |