Ionospheric corrections tailored to the Galileo High Accuracy Service

Autor: Guillermo González-Casado, D. Blonski, Cristhian Camilo Timoté, Jesús Juan, Adria Rovira-Garcia, Raul Orus-Perez, Jaume Sanz, I. Fernández-Hernández
Přispěvatelé: Universitat Politècnica de Catalunya. Departament de Física, Universitat Politècnica de Catalunya. Doctorat en Ciència i Tecnologia Aeroespacials, Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. gAGE - Grup d'Astronomia i Geomàtica
Jazyk: angličtina
Rok vydání: 2021
Předmět:
010504 meteorology & atmospheric sciences
Computer science
Artificial satellites in navigation
Satellite system
010502 geochemistry & geophysics
Precise Point Positioning
01 natural sciences
High accuracy navigation
Satèl·lits artificials en navegació
symbols.namesake
Sistema de posicionament global
Geochemistry and Petrology
Global Positioning System
Galileo (satellite navigation)
Computers in Earth Sciences
Ionosphere
0105 earth and related environmental sciences
Total electron content
business.industry
Ionosfera
Ionospheric modellings
Emphasis (telecommunications)
Ranging
Geophysics
Física::Astronomia i astrofísica [Àrees temàtiques de la UPC]
Physics::Space Physics
symbols
Enginyeria de la telecomunicació::Radiocomunicació i exploració electromagnètica::Satèl·lits i ràdioenllaços [Àrees temàtiques de la UPC]
International GNSS service
business
Algorithm
Zdroj: Journal of Geodesy
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
ISSN: 4000-1288
Popis: The Galileo High Accuracy Service (HAS) is a new capability of the European Global Navigation Satellite System that is currently under development. The Galileo HAS will start providing satellite orbit and clock corrections (i.e. non-dispersive effects) and soon it will also correct dispersive effects such as inter-frequency biases and, in its full capability, ionospheric delay. We analyse here an ionospheric correction system based on the fast precise point positioning (Fast-PPP) and its potential application to the Galileo HAS. The aim of this contribution is to present some recent upgrades to the Fast-PPP model, with the emphasis on the model geometry and the data used. The results show the benefits of integer ambiguity resolution to obtain unambiguous carrier phase measurements as input to compute the Fast-PPP model. Seven permanent stations are used to assess the errors of the Fast-PPP ionospheric corrections, with baseline distances ranging from 100 to 1000 km from the reference receivers used to compute the Fast-PPP corrections. The 99% of the GPS and Galileo errors in well-sounded areas and in mid-latitude stations are below one total electron content unit. In addition, large errors are bounded by the error prediction of the Fast-PPP model, in the form of the variance of the estimation of the ionospheric corrections. Therefore, we conclude that Fast-PPP is able to provide ionospheric corrections with the required ionospheric accuracy, and realistic confidence bounds, for the Galileo HAS. Open Access funding provided thanks to the CRUECSIC agreement with Springer Nature. The present work was supported in part by the European Space Agency contract IONO4HAS 4000128823/19/NL/AS, by the project RTI2018-094295-B-I00 funded by the MCIN/AEI 10.13039/501100011033 which is co-founded by the FEDER programme and by the Horizon 2020 Marie Skłodowska-Curie Individual Global Fellowship 797461 NAVSCIN.
Databáze: OpenAIRE