Existence of traveling wave solution in a diffusive predator-prey model with Holling type-III functional response
Autor: | Ting Hui Yang, Chi-Ru Yang |
---|---|
Rok vydání: | 2019 |
Předmět: |
Physics
Lyapunov function Work (thermodynamics) Traveling wave solution Mathematical analysis LaSalle's invariance principle Functional response 34C37 Type (model theory) 92D25 Nonlinear differential equations symbols.namesake Nonlinear Sciences::Adaptation and Self-Organizing Systems 35K57 Phase space 92D40 Traveling wave symbols Quantitative Biology::Populations and Evolution Wazewski's principle |
Zdroj: | Nonlinear Dynamics in Partial Differential Equations, S. Ei, S. Kawashima, M. Kimura and T. Mizumachi, eds. (Tokyo: Mathematical Society of Japan, 2015) |
ISSN: | 0920-1971 |
DOI: | 10.2969/aspm/06410523 |
Popis: | In this work, we show the existence of traveling wave solution of a diffusive predator-prey model with Holling type III functional response. The analysis is based on Wazewski's principle in the four-dimensional phase space of the nonlinear ordinary differential equation system given by the diffusive predator-prey system under the moving coordinates. |
Databáze: | OpenAIRE |
Externí odkaz: |