Side-chain oxidation of vitamin D3 in mouse kidney mitochondria: effect of the Hyp mutation and 1,25-dihydroxyvitamin D3 treatment

Autor: Harriet S. Tenenhouse, Glenville Jones, Agatha Yip
Rok vydání: 1987
Předmět:
Zdroj: Biochemistry and Cell Biology. 65:853-859
ISSN: 1208-6002
0829-8211
DOI: 10.1139/o87-111
Popis: Side-chain oxidation of vitamin D is an important degradative pathway. In the present study we compared the enzymes involved in side-chain oxidation in normal and Hyp mouse kidney. Homogenates of normal mouse kidney catalyze the conversion of 25-hydroxyvitamin D3 to 24,25-dihydroxyvitamin D3, 24-oxo-25-hydroxyvitamin D3, and 24-oxo-23,25-dihydroxyvitamin D3. After subcellular fractionation, total side-chain oxidative activity, estimated by the sum of the three products synthesized per milligram protein under initial rate conditions, coincided with the mitochondrial enzyme marker succinate–cytochrome-c reductase. Treatment of normal mice with 1,25-dihydroxyvitamin D3 (1.5 ng/g) resulted in an eightfold increase in mitochondrial enzyme activity, with no change in apparent Km but a significant rise in Vmax. With 24,25-dihydroxyvitamin D3 as the substrate, normal renal mitochondria produced 24-oxo-25-hydroxyvitamin D3 and 24-oxo-23,25-dihydroxyvitamin D3, and the synthesis of these metabolites could be increased sixfold by pretreatment with 1,25-dihydroxyvitamin D3. In the Hyp mouse, the side-chain oxidation pathway showed similar subcellular distribution of enzyme activity. However, product formation from 25-hydroxyvitamin D3 and 24,25-dihydroxyvitamin D3 was twofold greater in mutant than in normal mitochondria. Furthermore, 1,25-dihydroxyvitamin D3 pretreatment of Hyp mice resulted in a 3.4-fold increase over basal metabolism of both 25-hydroxyvitamin D3 and 24,25-dihydroxyvitamin D3. These results demonstrate that (i) kidneys from normal and Hyp mice possess basal and 1,25-dihydroxyvitamin D3 inducible enzyme system(s) in the mitochondrial fraction, which catalyze the side-chain oxidation of 25-hydroxyvitamin D3 and 24,25-dihydroxyvitamin D3, and (ii) the Hyp mutation appears to perturb the renal metabolism of both substrates only in the basal state.
Databáze: OpenAIRE