On conformal Gauss maps
Autor: | Francis E. Burstall |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Mathematics - Differential Geometry
Mathematics(all) Pure mathematics Quantitative Biology::Biomolecules General Mathematics 010102 general mathematics Gauss Harmonic map Conformal map Surface (topology) Space (mathematics) 01 natural sciences Differential Geometry (math.DG) FOS: Mathematics Conformal Gauss map Mathematics::Differential Geometry 53A30 (primary) 53C43 (secondary) 0101 mathematics Invariant (mathematics) Mathematics |
Zdroj: | Burstall, F 2019, ' On Conformal Gauss Maps ', Bulletin of the London Mathematical Society, vol. 51, no. 6, pp. 989-994 . https://doi.org/10.1112/blms.12293 |
DOI: | 10.1112/blms.12293 |
Popis: | We characterise the maps into the space of $2$-spheres in $S^n$ that are the conformal Gauss maps of conformal immersions of a surface. In particular, we give an invariant formulation and efficient proof of a characterisation, due to Dorfmeister--Wang \cites{DorWan13,DorWan}, of the harmonic maps that are conformal Gauss maps of Willmore surfaces. 5 pages. v2: minor corrections |
Databáze: | OpenAIRE |
Externí odkaz: |