A general approach to index theorems for holomorphic maps and foliations
Autor: | Francesca Tovena |
---|---|
Rok vydání: | 2008 |
Předmět: |
Pure mathematics
Index theorem Mathematics::Complex Variables Mathematical analysis Holomorphic functional calculus Holomorphic function Holomorphic maps Landau's constants Open mapping theorem (complex analysis) Identity theorem Holomorphic foliations Holomorphic connections Superfunction Analyticity of holomorphic functions Settore MAT/03 - Geometria Mathematics::Differential Geometry Geometry and Topology Complex manifold Comfortably embedded submanifolds Mathematics::Symplectic Geometry Mathematics |
Zdroj: | Geometriae Dedicata. 139:15-31 |
ISSN: | 1572-9168 0046-5755 |
DOI: | 10.1007/s10711-008-9336-z |
Popis: | Let M be a smooth complex manifold, and S(⊂ M) be a compact irreducible subvariety with dimCS > 0. Let be given either a holomorphic map f : M → M with f|S = idS, f ≠ idM, or a holomorphic foliation \({{\mathcal F}}\) on M: we describe an approach that can be applied to both map and foliation in order to obtain index theorems. |
Databáze: | OpenAIRE |
Externí odkaz: |