The S. pombe aurora-related kinase Ark1 associates with mitotic structures in a stage dependent manner and is required for chromosome segregation

Autor: Jeannie Paris, Michel Philippe, Iain M. Hagan, Janni Petersen, Martin Willer
Rok vydání: 2002
Předmět:
Zdroj: Journal of cell science. 114(Pt 24)
ISSN: 0021-9533
Popis: Metazoans contain three aurora-related kinases. Aurora A is required for spindle formation while aurora B is required for chromosome condensation and cytokinesis. Less is known about the function of aurora C. S. pombe contains a single aurora-related kinase, Ark1. Although Ark1 protein levels remained constant as cells progressed through the mitotic cell cycle, its distribution altered during mitosis and meiosis. Throughout G2 Ark1 was concentrated in one to three nuclear foci that were not associated with the spindle pole body/centromere complex. Following commitment to mitosis Ark1 associated with chromatin and was particularly concentrated at several sites including kinetochores/centromeres. Kinetochore/centromere association diminished during anaphase A, after which it was distributed along the spindle. The protein became restricted to a small central zone that transiently enlarged as the spindle extended. As in many other systems mitotic fission yeast cells exhibit a much greater degree of phosphorylation of serine 10 of histone H3 than interphase cells. A number of studies have linked this modification with chromosome condensation. Ark1 immuno-precipitates phosphorylated serine 10 of histone H3 in vitro. This activity was highest in mitotic extracts. The absence of the histone H3 phospho-serine 10 epitope from mitotic cells in which the ark1+ gene had been deleted (ark1.Δ1); the inability of these cells to resolve their chromosomes during anaphase and the co-localisation of this phospho-epitope with Ark1 early in mitosis, all suggest that Ark1 phosphorylates serine 10 of histone H3 in vivo. ark1.Δ1 cells also exhibited a reduction in kinetochore activity and a minor defect in spindle formation. Thus the enzyme activity, localisation and phenotype arising from our manipulations of this single fission yeast aurora kinase family member suggest that this single kinase is executing functions that are separately implemented by distinct aurora A and aurora B kinases in higher systems.
Databáze: OpenAIRE