Stability analysis of a vision-based UAV controller for autonomous road following missions

Autor: L. R. García Carrillo, Adrián Ramírez, Rogelio Lozano, Eduardo S. Espinoza, Sabine Mondié
Přispěvatelé: Departamento de Control Automático (CINVESTAV-IPN), Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Laboratoire Franco-Mexicain d'Informatique et d'Automatique (LAFMIA), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centro de Investigacion y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV)-Université Joseph Fourier - Grenoble 1 (UJF)-Université de Technologie de Compiègne (UTC)-Consejo Nacional de Ciencia y Tecnología [Mexico] (CONACYT)-Centre National de la Recherche Scientifique (CNRS), Center for Control, Dynamical-Systems, and Computation [Santa Barbara] (CCDC), University of California [Santa Barbara] (UCSB), University of California-University of California, Centro de Investigacion y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Heuristique et Diagnostic des Systèmes Complexes [Compiègne] (Heudiasyc), Université de Technologie de Compiègne (UTC)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2013
Předmět:
Zdroj: International Conference on Unmanned Aircraft Systems (ICUAS 2013)
International Conference on Unmanned Aircraft Systems (ICUAS 2013), May 2013, Atlanta, GA, United States. pp.1135-1143, ⟨10.1109/ICUAS.2013.6564804⟩
DOI: 10.1109/ICUAS.2013.6564804⟩
Popis: International audience; The stability analysis of a vision-based control strategy for a quad rotorcraft UAV is addressed. In the present application, the imaging sensing system provides the required states for performing autonomous navigation missions, however, it introduces latencies and time-delays from the time of capture to the time when measurements are available. To overcome this issue, a hierarchical controller is designed considering a timescale separation between fast and slow dynamics. The dynamics of the fast-time system are stabilized using classical proportional derivative controllers. Additionally, delay frequency and time domain techniques are explored to design a controller for the slow-time system. Simulations and experimental results consisting on a vision-based road following task are presented, verifying the efficacy of the approach and showing the benefits of the stability analysis performed.
Databáze: OpenAIRE