Uniqueness of the Gibbs measure for the $4$-state anti-ferromagnetic Potts model on the regular tree

Autor: David de Boer, Pjotr Buys, Guus Regts
Přispěvatelé: Analysis (KDV, FNWI), KdV Other Research (FNWI), Algebra, Geometry & Mathematical Physics (KDV, FNWI)
Rok vydání: 2020
Předmět:
Zdroj: Combinatorics Probability and Computing, 32(1), 158-182. Cambridge University Press
ISSN: 0963-5483
DOI: 10.48550/arxiv.2011.05638
Popis: We show that the $4$-state anti-ferromagnetic Potts model with interaction parameter $w\in(0,1)$ on the infinite $(d+1)$-regular tree has a unique Gibbs measure if $w\geq 1-\frac{4}{d+1}$ for all $d\geq 4$. This is tight since it is known that there are multiple Gibbs measures when $0\leq w
Subsection 1.2 and Section have been merged and slightly rewritten. Proof of Lemma 1.3 has been moved to an appendix, fixed a small mistake in the proof of this lemma. Some small other changes have been made. No significant changes. Accepted in CPC
Databáze: OpenAIRE