MIP Formulations for a Rich Real-World Lot-Sizing Problem with Setup Carryover

Autor: Daniel Godard, Xueying Shen, Virginie Gabrel, Filippo Focacci, Fabio Furini
Přispěvatelé: Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision (LAMSADE), Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Zdroj: Combinatorial Optimization: 4th International Symposium, ISCO 2016, Vietri sul Mare, Italy, May 16-18, 2016, Revised Selected Papers
4th International Symposium, ISCO 2016
4th International Symposium, ISCO 2016, May 2016, Vietri sul Mare, Italy. pp.123-134, ⟨10.1007/978-3-319-45587-7_11⟩
Lecture Notes in Computer Science ISBN: 9783319455860
ISCO
DOI: 10.1007/978-3-319-45587-7_11⟩
Popis: International audience; A rich lot-sizing problem is studied in this manuscript which comes from a real-world application. Our new lot-sizing problem combines several features, i.e., parallel machines, production time windows, backlogging, lost sale and setup carryover. Three mixed integer programming formulations are proposed. We theoretically and computationally compare these different formulations, testing them on real-world and randomly generated instances. Our study is the first step for efficiently tackling and solving this challenging real-world lot-sizing problem.
Databáze: OpenAIRE