An Optimal Enhanced Kalman Filter for a ZUPT-Aided Pedestrian Positioning Coupling Model

Autor: Pengsong Zhang, Jie Jia, Zhu Yixin, Hai Zhang, Fan Qigao, Zhuang Xiangpeng, Sun Yan
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Sensors, Vol 18, Iss 5, p 1404 (2018)
Sensors (Basel, Switzerland)
Sensors; Volume 18; Issue 5; Pages: 1404
ISSN: 1424-8220
Popis: Aimed at overcoming the problems of cumulative errors and low positioning accuracy in single Inertial Navigation Systems (INS), an Optimal Enhanced Kalman Filter (OEKF) is proposed in this paper to achieve accurate positioning of pedestrians within an enclosed environment. Firstly, the errors of the inertial sensors are analyzed, modeled, and reconstructed. Secondly, the cumulative errors in attitude and velocity are corrected using the attitude fusion filtering algorithm and Zero Velocity Update algorithm (ZUPT), respectively. Then, the OEKF algorithm is described in detail. Finally, a pedestrian indoor positioning experimental platform is established to verify the performance of the proposed positioning system. Experimental results show that the accuracy of the pedestrian indoor positioning system can reach 0.243 m, giving it a high practical value.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje