Defining variation in pre-human ecosystems can guide conservation: An example from a Caribbean coral reef
Autor: | Jian-xin Zhao, Andrew H. Altieri, Nicte-Ha Muñoz, Mauro L. Lepore, Aaron O'Dea, Marguerite A. Toscano, Erin M. Dillon, John M. Pandolfi, Melisa Chan, Jorge Manuel Morales-Saldaña |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
0106 biological sciences
Human ecosystem Conservation of Natural Resources Time Factors Coral Fringing reef Ecosystem ecology Porites lcsh:Medicine Context (language use) 010603 evolutionary biology 01 natural sciences Novel ecosystem Article Animals Humans 14. Life underwater Community ecology lcsh:Science Reef Ecosystem Marine biology Multidisciplinary geography.geographical_feature_category biology Ecology Conservation biology Fossils 010604 marine biology & hydrobiology lcsh:R Community structure Palaeoecology Agaricia Coral reef 15. Life on land biology.organism_classification Tropical ecology Anthozoa Geography Caribbean Region lcsh:Q |
Zdroj: | Scientific Reports Scientific Reports, Vol 10, Iss 1, Pp 1-10 (2020) |
ISSN: | 2045-2322 |
Popis: | Many Caribbean coral reefs are heavily degraded, yet their pre-human, natural states are often assumed or estimated using space-for-time substitution approaches. Here we use an 11-hectare suite of fossilised mid-Holocene (7.2–5.6 ka) fringing reefs in Caribbean Panama to define natural variation in hard coral community structure before human-impact to provide context to the states of the same reefs today. We collected bulk samples from four trenches dug into the mid-Holocene fossil reef and surficial bulk samples from 2–10 m depths on five adjacent modern reefs extending over 5 km. Analysis of the abundances of coral taxa in fossil bulk samples define the Historical Range of Variation (HRV) in community structure of the reefs. When compared to the community structure of adjacent modern reefs, we find that most coral communities today fall outside the HRV, identifying them as novel ecosystems and corroborating the well-documented transition from acroporid-dominated Caribbean reefs to reefs dominated by stress-tolerant taxa (Porites and Agaricia). We find one modern reef, however, whose community composition remains within the HRV showing that it has not transitioned to a novel state. Reef-matrix cores extracted from this reef reveal that the coral community has remained in this state for over 800 years, suggesting long-term stability and resistance to the region-wide shift to novel states. Without these data to provide historical context, this potentially robust and stable reef would be overlooked since it does not fulfil expectations of what a Caribbean coral reef should look like in the absence of humans. This example illustrates how defining past variation using the fossil record can improve our understanding of modern degradation and guide conservation. |
Databáze: | OpenAIRE |
Externí odkaz: |