Neuronal nitric oxide synthase inhibition attenuates cardiopulmonary dysfunctions after combined burn and smoke inhalation injury in sheep

Autor: Csaba Szabó, Fiona Saunders, Perenlei Enkhbaatar, Marc O. Maybauer, Martin Westphal, Frank C. Schmalstieg, Ann S. Burke, Dirk M. Maybauer, Lillian D. Traber, Gabriela A. Kulp, Hal K. Hawkins, Robert A. Cox, Daniel L. Traber, Kazunori Murakami, Naoki Morita, Beena B. Westphal-Varghese, Helen E. Rudloff, Eszter M. Horváth
Rok vydání: 2008
Předmět:
Zdroj: Critical Care Medicine. 36:1196-1204
ISSN: 0090-3493
DOI: 10.1097/ccm.0b013e31816a1a0c
Popis: OBJECTIVE We hypothesized that nitric oxide derived from the neuronal nitric oxide synthase (NOS) is responsible for much of the injury resulting from skin burn and smoke inhalation. Therefore, we aimed to examine the effects of selective neuronal NOS inhibition on cardiopulmonary functions and cellular injury in sheep with acute respiratory distress syndrome secondary to combined burn and smoke inhalation injury. DESIGN Prospective, randomized, controlled laboratory experiment. SETTING Investigational intensive care unit. SUBJECTS A total of 22 chronically instrumented adult ewes. INTERVENTIONS Sheep were randomly assigned to either healthy controls (sham), injured controls (40% third-degree flame burn; 48 breaths of cotton smoke), or an injury group treated with the specific neuronal NOS inhibitor 7-nitroindazole (1 mg x kg(-1) x hr(-1)) from 1 hr postinjury to the end of the 48-hr study period. Hypoxic pulmonary vasoconstriction was assessed as decrease in left pulmonary blood flow in response to single-lung hypoxic challenges (100% nitrogen) at baseline, 24 hrs, and 48 hrs. MEASUREMENTS AND MAIN RESULTS The combination injury contributed to a approximately 90% loss of hypoxic pulmonary vasoconstriction and was associated with significant pulmonary shunting and death of one animal. The increase in nitrate/nitrite plasma levels in injured controls (12 hrs: 17 +/- 2 vs. 6 +/- 1 microM in sham animals; p < .001) was linked to increases in inducible NOS messenger RNA and 3-nitrotyrosine formation in lung tissue (48 hrs: 22 +/- 1 vs. 0.8 +/- 0.3 nM in sham animals; p < .001). 7-Nitroindazole treatment prevented the injury-associated changes in inducible NOS messenger RNA, nitrate/nitrite, and 3-nitrotyrosine, thereby attenuating the loss of hypoxic pulmonary vasoconstriction and improving gas exchange. In addition, 7-nitroindazole decreased lung tissue concentrations of hemoxygenase-1 and ameliorated myocardial depression, airway obstruction, pulmonary edema, ventilatory pressures, and histopathologic changes seen in injured controls. CONCLUSIONS The present study provides evidence that neuronal NOS-derived nitric oxide plays a pivotal role in the pathogenesis of acute respiratory distress syndrome resulting from combined burn and smoke inhalation injury.
Databáze: OpenAIRE