Quantifying Cyanothece growth under DIC limitation

Autor: Meri Eichner, Takako Masuda, Tomáš Zavřel, Susanne Stephan, Eva Kotabová, Ondřej Prášil, David J. Suggett, Gabrielle Armin, Jan Červený, Marie Vancová, Pascal Claquin, Keisuke Inomura, Curtis Deutsch, Gábor Bernát, Sophie Rabouille
Přispěvatelé: Laboratoire d'Océanographie Microbienne (LOMIC), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Observatoire océanologique de Banyuls (OOB), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université des Antilles (UA), Normandie Université (NU)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Computational and Structural Biotechnology Journal, Vol 19, Iss, Pp 6456-6464 (2021)
Comput Struct Biotechnol J
Computational and Structural Biotechnology Journal
Computational and Structural Biotechnology Journal, 2021, 19, pp.6456-6464. ⟨10.1016/j.csbj.2021.11.036⟩
ISSN: 2001-0370
Popis: Graphical abstract
The photoautotrophic, unicellular N2-fixer, Cyanothece, is a model organism that has been widely used to study photosynthesis regulation, the structure of photosystems, and the temporal segregation of carbon (C) and nitrogen (N) fixation in light and dark phases of the diel cycle. Here, we present a simple quantitative model and experimental data that together, suggest external dissolved inorganic carbon (DIC) concentration as a major limiting factor for Cyanothece growth, due to its high C-storage requirement. Using experimental data from a parallel laboratory study as a basis, we show that after the onset of the light period, DIC was rapidly consumed by photosynthesis, leading to a sharp drop in the rate of photosynthesis and C accumulation. In N2-fixing cultures, high rates of photosynthesis in the morning enabled rapid conversion of DIC to intracellular C storage, hastening DIC consumption to levels that limited further uptake. The N2-fixing condition allows only a small fraction of fixed C for cellular growth since a large fraction was reserved in storage to fuel night-time N2 fixation. Our model provides a framework for resolving DIC limitation in aquatic ecosystem simulations, where DIC as a growth-limiting factor has rarely been considered, and importantly emphasizes the effect of intracellular C allocation on growth rate that varies depending on the growth environment.
Databáze: OpenAIRE