Generalization of Weyl realization to a class of Lie superalgebras

Autor: Stjepan Meljanac, Saša Krešić-Jurić, Danijel Pikutić
Rok vydání: 2017
Předmět:
Zdroj: Journal of Mathematical Physics
DOI: 10.48550/arxiv.1710.07494
Popis: This paper generalizes Weyl realization to a class of Lie superalgebras $\mathfrak{g}=\mathfrak{g}_0\oplus \mathfrak{g}_1$ satisfying $[\mathfrak{g}_1,\mathfrak{g}_1]=\{0\}$. First, we give a novel proof of the Weyl realization of a Lie algebra $\mathfrak{g}_0$ by deriving a functional equation for the function that defines the realization. We show that this equation has a unique solution given by the generating function for the Bernoulli numbers. This method is then generalized to Lie superalgebras of the above type.
Comment: 13 pages
Databáze: OpenAIRE