Automatic Quality Assessment for Audio-Visual Verification Systems. The LOVe submission to NIST SRE Challenge 2019

Autor: Olivier Le Blouch, Gaël Le Lan, Grigory Antipov, Nicolas Gengembre
Rok vydání: 2020
Předmět:
Zdroj: INTERSPEECH
DOI: 10.48550/arxiv.2008.05889
Popis: Fusion of scores is a cornerstone of multimodal biometric systems composed of independent unimodal parts. In this work, we focus on quality-dependent fusion for speaker-face verification. To this end, we propose a universal model which can be trained for automatic quality assessment of both face and speaker modalities. This model estimates the quality of representations produced by unimodal systems which are then used to enhance the score-level fusion of speaker and face verification modules. We demonstrate the improvements brought by this quality-dependent fusion on the recent NIST SRE19 Audio-Visual Challenge dataset.
Comment: 5 pages, 1 figure, accepted at INTERSPEECH 2020. Corrected the reference [20]
Databáze: OpenAIRE