Distributions in CFT. Part II. Minkowski space
Autor: | Jiaxin Qiao, Petr Kravchuk, Slava Rychkov |
---|---|
Přispěvatelé: | Institut des Hautes Etudes Scientifiques (IHES), IHES, Laboratoire de physique de l'ENS - ENS Paris (LPENS (UMR_8023)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Champs, Gravitation et Cordes, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-École normale supérieure - Paris (ENS Paris), Laboratoire de physique de l'ENS - ENS Paris (LPENS), Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris) |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
space: Minkowski
invariance: conformal Nuclear and High Energy Physics Pure mathematics tube [PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] Field Theories in Higher Dimensions QC770-798 Conformal and W Symmetry 01 natural sciences operator product expansion field theory: Euclidean Conformal symmetry Nuclear and particle physics. Atomic energy. Radioactivity 0103 physical sciences Euclidean geometry Minkowski space Ising model unitarity correlation function 010306 general physics Commutative property Axiom Physics field theory: conformal Conformal Field Theory 010308 nuclear & particles physics Conformal field theory axiomatic field theory [PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th] Wightman axioms D Intuition about Lemma 4.2 16. Peace & justice spectral Signature (topology) signature |
Zdroj: | Journal of High Energy Physics Journal of High Energy Physics, Springer, 2021, 08, pp.094. ⟨10.1007/JHEP08(2021)094⟩ Journal of High Energy Physics, Vol 2021, Iss 8, Pp 1-131 (2021) |
ISSN: | 1126-6708 1029-8479 |
DOI: | 10.1007/JHEP08(2021)094⟩ |
Popis: | CFTs in Euclidean signature satisfy well-accepted rules, such as the convergent Euclidean OPE. It is nowadays common to assume that CFT correlators exist and have various properties also in Lorentzian signature. Some of these properties may represent extra assumptions, and it is an open question if they hold for familiar statistical-physics CFTs such as the critical 3d Ising model. Here we consider Wightman 4-point functions of scalar primaries in Lorentzian signature. We derive a minimal set of their properties solely from the Euclidean unitary CFT axioms, without using extra assumptions. We establish all Wightman axioms (temperedness, spectral property, local commutativity, clustering), Lorentzian conformal invariance, and distributional convergence of the s-channel Lorentzian OPE. This is done constructively, by analytically continuing the 4-point functions using the s-channel OPE expansion in the radial cross-ratios ρ, $$ \overline{\rho} $$ ρ ¯ . We prove a key fact that |ρ|, $$ \left|\overline{\rho}\right| $$ ρ ¯ < 1 inside the forward tube, and set bounds on how fast |ρ|, $$ \left|\overline{\rho}\right| $$ ρ ¯ may tend to 1 when approaching the Minkowski space.We also provide a guide to the axiomatic QFT literature for the modern CFT audience. We review the Wightman and Osterwalder-Schrader (OS) axioms for Lorentzian and Euclidean QFTs, and the celebrated OS theorem connecting them. We also review a classic result of Mack about the distributional OPE convergence. Some of the classic arguments turn out useful in our setup. Others fall short of our needs due to Lorentzian assumptions (Mack) or unverifiable Euclidean assumptions (OS theorem). |
Databáze: | OpenAIRE |
Externí odkaz: |