Extremal Graphs Without 4-Cycles
Autor: | Jason Williford, Evan D. Nash, Frank A. Firke, Peter M. Kosek |
---|---|
Rok vydání: | 2012 |
Předmět: |
05C35
51E15 Symmetric graph 0102 computer and information sciences 01 natural sciences Theoretical Computer Science law.invention Combinatorics symbols.namesake Graph power law Line graph FOS: Mathematics Mathematics - Combinatorics Discrete Mathematics and Combinatorics 0101 mathematics Complement graph Mathematics 010102 general mathematics Geometric graph theory Extremal graph theory Planar graph Computational Theory and Mathematics 010201 computation theory & mathematics symbols Bound graph Combinatorics (math.CO) |
DOI: | 10.48550/arxiv.1201.4912 |
Popis: | We prove an upper bound for the number of edges a C4-free graph on q^2 + q vertices can contain for q even. This upper bound is achieved whenever there is an orthogonal polarity graph of a plane of even order q. Comment: 9 pages |
Databáze: | OpenAIRE |
Externí odkaz: |