On a matrix partition conjecture

Autor: Dale M. Mesner, Earl S. Kramer, Stephen Mellendorf, Richard A. Brualdi, Peter Horak, Geňa Hahn
Rok vydání: 1995
Předmět:
Zdroj: Journal of Combinatorial Theory, Series A. 69:333-346
ISSN: 0097-3165
DOI: 10.1016/0097-3165(95)90056-x
Popis: In 1977, Ganter and Teirlinck proved that any 2 t × 2 t matrix with 2 t nonzero elements can be partitioned into four submatrices of order t of which at most two contain nonzero elements. In 1978, Kramer and Mesner conjectured that any mt × nt matrix with kt nonzero elements can be partitioned into mn submatrices of order t of which at most k contain nonzero elements. We show that this conjecture is true for some values of m , n , t and k but that it is false in general.
Databáze: OpenAIRE