MicroRNA-128 Confers Anti-Endothelial Adhesion and Anti-Migration Properties to Counteract Highly Metastatic Cervical Cancer Cells’ Migration in a Parallel-Plate Flow Chamber
Autor: | Ching-Chin Tsai, Pei-Chin Chuang, Shun-Hung Tseng, Wen-Hong Su, Chun-Wun Lu |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
cell migration
Parallel-plate flow chamber Cell Uterine Cervical Neoplasms parallel-plate flow chamber Catalysis Article Metastasis Inorganic Chemistry HeLa lcsh:Chemistry Cell Movement medicine Humans Physical and Theoretical Chemistry Neoplasm Metastasis Cell adhesion Molecular Biology lcsh:QH301-705.5 Spectroscopy biology Chemistry Organic Chemistry Cell migration microRNA-128 cell adhesion General Medicine Adhesion biology.organism_classification medicine.disease Computer Science Applications MicroRNAs medicine.anatomical_structure lcsh:Biology (General) lcsh:QD1-999 cervical cancer cells Cancer cell Cancer research Female HeLa Cells |
Zdroj: | International Journal of Molecular Sciences Volume 22 Issue 1 International Journal of Molecular Sciences, Vol 22, Iss 215, p 215 (2021) |
ISSN: | 1422-0067 |
DOI: | 10.3390/ijms22010215 |
Popis: | Despite the distant metastasis of cervical cancer cells being a prominent cause of mortality, neither the metastasis capacity nor the in vitro conditions mimicking adhesion of cervical cancer cells to endothelial cells have been fully elucidated. Circulating metastatic cancer cells undergo transendothelial migration and invade normal organs in distant metastasis however, the putative molecular mechanism remains largely uncertain. In this study, we describe the use of an in vitro parallel-plate flow chamber to simulate the dynamic circulation stress on cervical cancer cells and elucidate their vascular adhesion and metastasis. We isolate the viable and shear stress-resistant (SSR) cervical cancer cells for mechanistic studies. Remarkably, the identified SSR-HeLa and SSR-CaSki exhibited high in vitro adhesive and metastatic activities. Hence, a consistently suppressed miR-128 level was revealed in SSR cell clones compared to those of parental wild-type (WT) cells. Overexpressed miR-128 attenuated SSR-HeLa cells&rsquo adherence to human umbilical cord vein endothelial cells (HUVECs) in contrast, suppressed miR-128 efficiently augmented the static adhesion capacity in WT-HeLa and WT-CaSki cells. Hence, amplified miR-128 modestly abolished in vitro SSR-augmented HeLa and CaSki cell movement, whereas reduced miR-128 aggravated the migration speed in a time-lapse recording assay in WT groups. Consistently, the force expression of miR-128 alleviated the SSR-enhanced HeLa and CaSki cell mobility in a wound healing assay. Notably, miR-128 mediated SSR-enhanced HeLa and CaSki cells&rsquo adhesion and metastasis through suppressed ITGA5, ITGB5, sLex, CEACAM-6, MMP9, and MMP23 transcript levels. Our data provide evidence suggesting that miR-128 is a promising microRNA that prevented endothelial cells&rsquo adhesion and transendothelial migration to contribute to the SSR-enhanced adhesion and metastasis progression under a parallel-plate flow chamber system. This indicates that the nucleoid-based miR-128 strategy may be an attractive therapeutic strategy to eliminate tumor cells resistant to circulation shear flow, prevent vascular adhesion, and preclude subsequent transendothelial metastasis. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |