Evolutionary relationship and population structure of domestic Bovidae animals based on MHC-linked and neutral autosomal microsatellite markers
Autor: | Jian-Lin Han, Yong-Fu Huang, Wang-Dui Basang, Zhong-Quan Zhao, Ming-Xing Chu, Yan Zeng, Guang-Xin E, Bai-Gao Yang, Qiong-Hua Hong, Jia-Hua Zhang, Yan-Guo Han, Dong-Ke Zhou, Yongju Zhao, Yan-Bin Zhu, Yuehui Ma, Li-Peng Chen, Lu-Pei Zhang, Ri-Su Na |
---|---|
Rok vydání: | 2019 |
Předmět: |
0301 basic medicine
Heterozygote Immunology Population Major histocompatibility complex Analysis of molecular variance Loss of heterozygosity Major Histocompatibility Complex 03 medical and health sciences 0302 clinical medicine Animals education Molecular Biology Phylogeny education.field_of_study biology Haplotype Genetic Variation Phylogenetic network Biological Evolution 030104 developmental biology Haplotypes Evolutionary biology Phylogenetic Pattern Animals Domestic Host-Pathogen Interactions biology.protein Microsatellite Cattle 030215 immunology Microsatellite Repeats |
Zdroj: | Molecular immunology. 124 |
ISSN: | 1872-9142 |
Popis: | Major histocompatibility complex (MHC) genes are critical for disease resistance or susceptibility responsible for host-pathogen interactions determined mainly by extensive polymorphisms in the MHC genes. Here, we examined the diversity and phylogenetic pattern of MHC haplotypes reconstructed using three MHC-linked microsatellite markers in 55 populations of five Bovidae species and compared them with those based on neutral autosomal microsatellite markers (NAMs). Three-hundred-and-forty MHC haplotypes were identified in 1453 Bovidae individuals, suggesting significantly higher polymorphism and heterozygosity compared with those based on NAMs. The ambitious boundaries in population differentiation (phylogenetic network, pairwise FST and STRUCTURE analyses) within and between species assessed using the MHC haplotypes were different from those revealed by NAMs associated closely with speciation, geographical distribution, domestication and management histories. In addition, the mean FST was significantly correlated negatively with the number of observed alleles (NA), observed (HO) and expected (HE) heterozygosity and polymorphism information content (PIC) (P 0.05) between the MHC haplotype and NAMs datasets. Analysis of molecular variance (AMOVA) revealed a lower percentage of total variance (PTV) between species/groups based on the MHC-linked microsatellites than NAMs. Therefore, it was inferred that individuals within populations accumulated as many MHC variants as possible to increase their heterozygosity and thus the survival rate of their affiliated populations and species, which eventually reduced population differentiation and thereby complicated their classification and phylogenetic relationship inference. In summary, host-pathogen coevolution and heterozygote advantage, rather than demographic history, act as key driving forces shaping the MHC diversity within the populations and determining the interspecific MHC diversity. |
Databáze: | OpenAIRE |
Externí odkaz: |