Dynamics of a Ferromagnetic Particle Levitated Over a Superconductor
Autor: | Dmitry Budker, Yehuda B. Band, Derek F. Jackson Kimball, Sean Lourette, Metin Kayci, Tao Wang, S. R. O'Kelley, Alexander O. Sushkov |
---|---|
Rok vydání: | 2018 |
Předmět: |
Superconductivity
Physics Condensed Matter - Mesoscale and Nanoscale Physics Condensed matter physics Spins Quantum limit General Physics and Astronomy FOS: Physical sciences Physics - Applied Physics 02 engineering and technology Applied Physics (physics.app-ph) 021001 nanoscience & nanotechnology 01 natural sciences Physics::Fluid Dynamics Ferromagnetism Condensed Matter::Superconductivity 0103 physical sciences Mesoscale and Nanoscale Physics (cond-mat.mes-hall) Precession Levitation Torque 010306 general physics 0210 nano-technology Microscale chemistry |
DOI: | 10.48550/arxiv.1810.08748 |
Popis: | Under conditions where the angular momentum of a ferromagnetic particle is dominated by intrinsic spin, applied torque is predicted to cause gyroscopic precession of the particle. If the particle is sufficiently isolated from the environment, a measurement of spin precession can potentially yield sensitivity to torque beyond the standard quantum limit. Levitation of a micron-scale ferromagnetic particle above a superconductor is a possible method of near frictionless suspension enabling observation of ferromagnetic particle precession and ultrasensitive torque measurements. We experimentally investigate the dynamics of a micron-scale ferromagnetic particle levitated above a superconducting niobium surface. We find that the levitating particles are trapped in potential minima associated with residual magnetic flux pinned by the superconductor and, using an optical technique, characterize the quasiperiodic motion of the particles in these traps. Comment: 9 pages, 10 figures |
Databáze: | OpenAIRE |
Externí odkaz: |