Significance of nuclear quantum effects in hydrogen bonded molecular chains

Autor: Ondrej Marsalek, Martin Švec, Jack Hellerstedt, Sigurdur I. Erlingsson, Aleš Cahlík, Olivier Siri, Vijai M. Santhini, Simon Pascal, Jesús I. Mendieta-Moreno, Pavel Jelínek, Diego Soler-Polo, Pingo Mutombo, Karel Výborný
Přispěvatelé: Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), UAM. Departamento de Física de la Materia Condensada
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Chemical process
Materials science
Hydrogen
Proton
FOS: Physical sciences
General Physics and Astronomy
chemistry.chemical_element
02 engineering and technology
010402 general chemistry
01 natural sciences
Proton Tunneling
Delocalized electron
Quantum mechanics
Mesoscale and Nanoscale Physics (cond-mat.mes-hall)
Path integral molecular dynamics
General Materials Science
Quantum tunnelling
ComputingMilieux_MISCELLANEOUS
Path Integral Molecular Dynamics
π-Electron Delocalization
Condensed Matter - Mesoscale and Nanoscale Physics
in-Gap Electronic States
Hydrogen bond
[CHIM.ORGA]Chemical Sciences/Organic chemistry
Scanning Probe Microscopy
General Engineering
Física
Hydrogen Bonds
[CHIM.MATE]Chemical Sciences/Material chemistry
021001 nanoscience & nanotechnology
0104 chemical sciences
[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry
[CHIM.POLY]Chemical Sciences/Polymers
chemistry
Electron configuration
Nuclear Quantum Effect
0210 nano-technology
Zdroj: ACS Nano
ACS Nano, American Chemical Society, 2021, ⟨10.1021/acsnano.1c02572⟩
ACS Nano, 2021, ⟨10.1021/acsnano.1c02572⟩
Biblos-e Archivo. Repositorio Institucional de la UAM
Consejo Superior de Investigaciones Científicas (CSIC)
ISSN: 1936-0851
Popis: In hydrogen bonded systems, nuclear quantum effects such as zero-point motion and tunneling can significantly affect their material properties through underlying physical and chemical processes. Presently, direct observation of the influence of nuclear quantum effects on the strength of hydrogen bonds with resulting structural and electronic implications remains elusive, leaving opportunities for deeper understanding to harness their fascinating properties. We studied hydrogen-bonded one-dimensional quinonediimine molecular networks which may adopt two isomeric electronic configurations via proton transfer. Herein, we demonstrate that concerted proton transfer promotes a delocalization of π-electrons along the molecular chain, which enhances the cohesive energy between molecular units, increasing the mechanical stability of the chain and giving rise to new electronic in-gap states localized at the ends. These findings demonstrate the identification of a new class of isomeric hydrogen bonded molecular systems where nuclear quantum effects play a dominant role in establishing their chemical and physical properties. We anticipate that this work will open new research directions towards the control of mechanical and electronic properties of low-dimensional molecular materials via concerted proton tunneling.
Databáze: OpenAIRE