Oil-in-water emulsions based on hydrophobic eutectic systems

Autor: A. Catarina C. Esteves, Dannie J. G. P. van Osch, Jaap van Spronsen, Remco Tuinier, Mark Vis
Přispěvatelé: Inorganic Materials & Catalysis, Physical Chemistry, ICMS Core, Sub Physical and Colloid Chemistry, Physical and Colloid Chemistry
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Physical chemistry chemical physics : PCCP, 22(4), 2181-2187. Royal Society of Chemistry
Physical Chemistry Chemical Physics, 22(4), 2181. Royal Society of Chemistry
ISSN: 1463-9076
Popis: We demonstrate that oil-in-water emulsions can be prepared from hydrophobic eutectic systems (ES). Light microscopy and dynamic light scattering show that droplets are formed and zeta potential measurements indicate sufficient stability against coalescence. We investigate whether Ostwald ripening occurs in these ES-in-water emulsions by following the droplet growth over time and comparing it with an emulsion comprising decane in water. At first sight, the Ostwald ripening rate of the ES-in-water emulsion is expected to be orders of magnitude larger than the ripening of the decane-in-water emulsion due to a much higher solubility of the dispersed phase. However, experimentally we find that the ES-in-water emulsion actually grows a factor of two slower than the decane-in-water emulsion. We attribute this to the two-component nature of the ES, since the growth rate is mainly set by the least-soluble component of the ES. Thus, ESs offer the advantage of creating liquid emulsions of solid components, while setting the emulsion stability through their composition.
Databáze: OpenAIRE